Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338317

RESUMO

µ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and ß-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited ß-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.


Assuntos
Receptores Opioides mu , Receptores Opioides , Humanos , Receptores Opioides/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/efeitos adversos , Analgésicos/farmacologia , beta-Arrestinas/metabolismo
2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399444

RESUMO

In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.

3.
J Med Chem ; 67(2): 1580-1610, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38190615

RESUMO

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Selênio , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Serotonina/uso terapêutico , Ratos Wistar , Neuroproteção , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Receptores de Serotonina , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
4.
Eur J Med Chem ; 260: 115756, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657272

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder with a complex aetiology, is the most common memory dysfunction particularly affecting the elderly. Various protein targets have been classified to be involved in the AD treatment, including 5-HT6 receptor (5-HT6R). So far, the 5-HT6R ligands obtained by our research group have become a good basis for hydrophobicity modulation to give a chance for more effective action toward AD by additional influence on target enzymes, e.g. cyclin-dependent kinase 5 (CDK5). In the search for 5-HT6R agents with additional inhibitory action on the enzyme, a series of 25 new 1,3,5-triazines (7-31) as modifications of lead, 4-[1-(2,5-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazine-2-amine (6), was rationally designed. Molecular modelling, synthesis, crystallographic studies, in vitro biological assays and behavioral studies in vivo were performed. The new triazines showed high affinity (Ki < 100 nM) and selectivity for 5-HT6R. The most effective one, 4-[1-(2,5-difluorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazine-2-amine (8), exhibited the strong antagonistic action towards 5-HT6R (Ki = 5 nM, pKb = 8.16), had an impact on the memory processes in the Novel Object Recognition test and displayed anxiolytic-like activity in the Elevated Plus Maze test in rats. Moreover, it had the antiplatelet effect as well as very good permeability (PAMPA model), high metabolic stability (RLMs) and satisfactory safety in vitro. Although the CDK5 inhibitory effects in vitro for the tested compounds (8, 10, 14, 18, 26-31) missed the potency expected from in silico simulations, the novel antagonist (8) with a very satisfying pharmacological and ADMET profile can serve as a new lead structure in further searches for innovative therapy against AD with accompanying symptoms.


Assuntos
Doença de Alzheimer , Ansiolíticos , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Serotonina , Aminas , Memória
5.
Eur J Med Chem ; 259: 115695, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567058

RESUMO

Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT6 receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT6 receptor ligands. The main aim of this research is to compare the biological activity of the newly synthesized sulfur derivatives with their oxygen analogues and their N-demethylated O- and S-metabolites obtained for the first time. Most of the new triazines displayed high affinity (Ki < 200 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R, and D2R, in the radioligand binding assays. For selected, active compounds crystallographic studies, functional bioassays, and ADME-Tox profile in vitro were performed. The exciting novelty is that the sulfur derivatives exhibit an agonistic mode of action contrary to all other compounds obtained to date in this chemical class herein and previously reported. Advanced computational studies indicated that this intriguing functional shift might be caused by presence of chalcogen bonds formed only by the sulfur atom. In addition, the N-demethylated derivatives have emerged highly potent antioxidants and, moreover, show a significant improvement in metabolic stability compared to the parent structures. The cholinesterase study present micromolar inhibitory AChE and BChE activity for both 5-HT6 agonist 19 and potent antagonist 5. Finally, the behavioral experiments of compound 19 demonstrated its antidepressant-like properties and slight ability to improve cognitive deficits, without inducing memory impairments by itself. Described pharmacological properties of both compounds (5 and 19) allow to give a design clue for the development of multitarget compounds with 5-HT6 (both agonist and antagonist)/AChE and/or BChE mechanism in the group of 1,3,5-triazine derivatives.


Assuntos
Doença de Alzheimer , Calcogênios , Humanos , Doença de Alzheimer/tratamento farmacológico , Serotonina , Estrutura Molecular , Relação Estrutura-Atividade , Receptores de Serotonina/metabolismo , Ligantes , Triazinas/química , Éteres , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo
6.
Biomolecules ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37509114

RESUMO

Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Xantina/farmacologia , Xantina/uso terapêutico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Dopamina , Ligantes , Relação Estrutura-Atividade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Monoaminoxidase/metabolismo , Dopaminérgicos/farmacologia
7.
Bioorg Chem ; 139: 106737, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482048

RESUMO

The new dual 5HT1A/5HT7 receptor ligands were designed based on the purine-2,6-dione scaffold with the fluorine atom. Twenty-one new derivatives were synthesized, and their structure-activity relationship was summarized. Compound 11 (7-(2-(3-fluorophenyl)-2-oxoethyl)-8-((4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) showed the highest affinity to 5HT1AR and 5HT7R, and was the most potent antagonist of 5-HT1AR (Kb = 0.26 ± 0.1 nM) which activity can be to reference compound NAN-190 (Kb = 0.26 ± 0.1 nM). The experimentally established physicochemical parameters of compound 11 showed that compound, as slightly ionized in the blood, could penetrate the blood-brain barrier. A molecular docking study showed that the fluorine substitution introduces additional stabilization effects on binding to 5HT1A/5HT7Rs. In animal assays of depression and anxiety, compound 11 revealed activity in terms of dosage compared to marketed psychotropics such as fluoxetine, citalopram, and sertraline.


Assuntos
Antidepressivos , Flúor , Animais , Ligantes , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Relação Estrutura-Atividade , Purinas/química
8.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37259325

RESUMO

Depression, anxiety, and schizophrenia may coexist in psychiatric patients. Moreover, these disorders are very often associated with cognitive impairments. However, pharmacotherapy of these conditions remains challenging due to limited drug effectiveness or numerous side effects. Therefore, there is an urgent need to develop novel multimodal compounds that can be used to treat depression, anxiety, and schizophrenia, as well as memory deficits. Thus, this study aimed to evaluate the potential antidepressant-like, anxiolytic-like, antipsychotic-like effects, and anti-amnesic properties, of the novel arylpiperazine derivative of salicylamide, JJGW07, with an affinity towards serotonin 5-HT1A, 5-HT2A, and 5-HT7 and dopamine D2 receptors. Firstly, we investigated the compound's affinity for 5-HT6 receptors and its functional activity by using in vitro assays. JJGW07 did not bind to 5-HT6 receptors and showed antagonistic properties for 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors. Based on the receptor profile, we performed behavioral studies in mice to evaluate the antidepressant-like, anxiolytic-like, and antipsychotic-like activity of the tested compound using forced swim and tail suspension tests; four-plate, marble-burying, and elevated plus maze tests; and MK-801- and amphetamine-induced hyperlocomotion tests, respectively. JJGW07 revealed antidepressant-like properties in the tail suspension test, anxiolytic-like effects in the four-plate and marble-burying tests, and antipsychotic-like activity in the MK-801-induced hyperlocomotion test. Importantly, the tested compound did not induce catalepsy and motor impairments or influence locomotor activity in rodents. Finally, to assess the potential procognitive and anti-amnesic properties of JJGW07, we used passive avoidance and object recognition tests in mice. JJGW07 demonstrated positive effects on long-term emotional memory and also ameliorated MK-801-induced emotional memory impairments in mice, but showed no procognitive properties in the case of recognition memory. Our results encourage the search for new compounds among salicylamide derivatives, which could be model structures with multitarget mechanisms of action that could be used in psychiatric disorder therapy.

9.
ACS Chem Neurosci ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014731

RESUMO

While monoaminergic deficits are evident in all depressed patients, nonresponders are characterized by impaired GABA-ergic signaling and the simultaneous presence of the inflammatory component. Pharmacological agents able to curb pathological immune responses and modulate ineffective GABA-ergic neurotransmission are thought to improve therapeutic outcomes in the treatment-resistant subgroup of depressed patients. Here, we report on a set of dually acting molecules designed to simultaneously modulate GABA-A and 5-HT6 receptor activity. The serotonin 5-HT6 receptor was chosen as a complementary molecular target, due to its promising antidepressant-like activities reported in animal studies. Within the study we identified that lead molecule 16 showed a desirable receptor profile and physicochemical properties. In pharmacological studies, 16 was able to reduce the secretion of proinflammatory cytokines and decrease oxidative stress markers. In animal studies, 16 exerted antidepressant-like activity deriving from a synergic interplay between 5-HT6 and GABA-A receptors. Altogether, the presented findings point to hybrid 16 as an interesting tool that interacts with pharmacologically relevant targets, matching the pathological dysfunction of depression associated with neuroinflammation.

10.
Behav Brain Res ; 438: 114207, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36368443

RESUMO

Activation of cortical serotonin 5-HT1A receptors may be a promising strategy to achieve rapid-acting antidepressant (RAAD) activity. NLX-204 is a selective 5-HT1A receptor biased agonist that, in naïve mice, robustly decreases immobility in the forced swim test (FST), and preferentially phosphorylates extracellular signal-regulated kinase (ERK1/2), involved in antidepressant activity. Here, we evaluated the properties of NLX-204 in two mouse models of depression. Male CD-1 mice were subjected to unpredictable chronic mild stress (UCMS) for 4-weeks or to repeated corticosterone (CORT, 20 mg/kg s.c./day) for 3-weeks before receiving acute administration of NLX-204 (2 mg/kg, p.o.). Depressive-like behavior was assessed in the FST, anhedonia-like behavior in the sucrose preference test (SPT) and locomotor activity was also recorded. Phosphorylation of ERK1/2 (pERK1/2) and cAMP response binding element (pCREB) were measured ex vivo in hippocampus and prefrontal cortex (PFC). UCMS or CORT treatment increased immobility in the FST, elicited a sucrose preference deficit, and decreased pERK1/2 and pCREB levels in PFC and hippocampus. NLX-204 reduced depressive-like behavior in the FST in CORT and UCMS mice, and normalized sucrose preference in CORT mice, suggesting anti-anhedonic activity. NLX-204 increased pERK1/2 levels in PFC of UCMS mice. NLX-204 also increased pCREB levels in PFC of CORT mice. These data suggest that NLX-204 has RAAD-like properties not only in naïve mice, but also in mice in a "depressive-like" state, and that these involve changes in PFC and hippocampal pERK1/2 and pCREB levels. These data provide additional evidence that activation of 5-HT1A receptors by selective biased agonists, such as NLX-204, may constitute a promising RAAD strategy.


Assuntos
Depressão , Receptor 5-HT1A de Serotonina , Masculino , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Serotonina/metabolismo , Antidepressivos/farmacologia , Modelos Animais de Doenças , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Sacarose
11.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557861

RESUMO

Carbon dots (CDs) are carbon-based zero-dimensional nanomaterials that can be prepared from a number of organic precursors. In this research, they are prepared using fat-free UHT cow milk through the hydrothermal method. FTIR analysis shows C=O and C-H bond presence, as well as nitrogen-based bond like C-N, C=N and -NH2 presence in CDs, while the absorption spectra show the absorption band at 280 ± 3 nm. Next, the Biuret test was performed, with the results showing no presence of unreacted proteins in CDs. It can be said that all proteins are converted in CDs. Photo luminance spectra shows the emission of CDs is 420 nm and a toxicity study of CDs was performed. The Presto Blue method was used to test the toxicity of CDs for murine hippocampal cells. CDs at a concentration of 4 mg/mL were hazardous independent of synthesis time, while the toxicity was higher for lower synthesis times of 1 and 2 h. When the concentration is reduced in 1 and 2 h synthesized CDs, the cytotoxic effect also decreases significantly, ensuring a survival rate of 60-80%. However, when the synthesis time of CDs is increased, the cytotoxic effect decreases to a lesser extent. The CDs with the highest synthesis time of 8 h do not show a cytotoxic effect above 60%. The cytotoxicity study shows that CDs may have a concentration and time-dependent cytotoxic effect, reducing the number of viable cells by 40%.


Assuntos
Pontos Quânticos , Animais , Camundongos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Leite , Carbono/toxicidade , Carbono/química , Corantes Fluorescentes/química
12.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555568

RESUMO

Schizophrenia is a chronic mental illness, which remains difficult to treat. A high resistance to the available therapies, their insufficient efficacy, and numerous side effects are the reasons why there is an urgent need to develop new antipsychotics. This study aimed to assess the antipsychotic-like effects of JJGW08, a novel arylpiperazine alkyl derivative of salicylamide, in rodents. First, considering the JJGW08 receptor profile, we investigated the compound's intrinsic activity towards dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors using functional assays. Next, we assessed the effect of JJGW08 on MK-801- and amphetamine-induced hyperlocomotion, its risk of inducing catalepsy and impairing motor coordination, as well as the anxiolytic-like effects in the four-plate and marble burying tests in mice. Finally, we investigated the antipsychotic-like properties of JJGW08 in rats using MK-801-induced hyperlocomotion and prepulse inhibition tests. We found that JJGW08 showed antagonistic properties at dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors. However, the effect on the 5-HT2A and 5-HT7 receptors was very weak. Moreover, the tested compound showed an antipsychotic-like effect in MK-801- and amphetamine-induced hyperlocomotion but not in a prepulse inhibition test in rats. Notably, JJGW08 demonstrated anxiolytic-like properties in both behavioral tests. Importantly, the compound did not induce catalepsy or motor coordination impairment in mice at antipsychotic-like doses. Our study suggests it is worth searching for new potential antipsychotics among arylpiperazine alkyl derivatives of salicylamide.


Assuntos
Ansiolíticos , Antipsicóticos , Ratos , Camundongos , Animais , Antipsicóticos/efeitos adversos , Serotonina/efeitos adversos , Ansiolíticos/farmacologia , Dopamina/efeitos adversos , Roedores , Maleato de Dizocilpina/efeitos adversos , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Anfetamina/farmacologia
13.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566280

RESUMO

The µ-opioid receptors belong to the family of G protein-coupled receptors (GPCRs), and their activation triggers a cascade of intracellular relays with the final effect of analgesia. Classical agonists of this receptor, such as morphine, are the main targets in the treatment of both acute and chronic pain. However, the dangerous side effects, such as respiratory depression or addiction, significantly limit their widespread use. The allosteric centers of the receptors exhibit large structural diversity within particular types and even subtypes. Currently, a considerable interest is aroused by the modulation of µ-opioid receptors. The application of such a technique may result in a reduction in the dose or even discontinuation of classical opiates, thus eliminating the side effects typical of this class of drugs. Our aim is to obtain a series of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazole derivatives and provide more information about their activity and selectivity on OP3 (MOP, human mu opioid receptor). The study was based on an observation that some carbonyl derivatives of 1-aryl-2-aminoimidazoline cooperate strongly with morphine or DAMGO in sub-threshold doses, producing similar results to those of normal active doses. To elucidate the possible mechanism of such enhancement, we performed a few in vitro functional tests (involving cAMP and ß-arrestin recruitment) and a radioligand binding assay on CHO-K1 cells with the expression of the OP3 receptor. One of the compounds had no orthosteric affinity or intrinsic activity, but inhibited the efficiency of DAMGO. These results allow to conclude that this compound is a negative allosteric modulator (NAM) of the human µ-opioid receptor.


Assuntos
Morfina , Receptores Opioides mu , Analgésicos Opioides/uso terapêutico , Animais , Cricetinae , Cricetulus , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Humanos , Imidazóis/farmacologia , Morfina/farmacologia , Receptores Opioides mu/metabolismo
14.
Eur J Med Chem ; 233: 114218, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248836

RESUMO

Neuropsychiatric symptoms (NPS), such as psychosis, depression and anxiety are frequently observed among patients with dementia. NPS is treated by off-label psychotropic medications that are only modestly effective in dementia patients, with a high risk of adverse events and cognitive decline. Considering the above, there is an unmet need for a well-tolerated and effective therapy of NPS in dementia. We designed and synthesized a library of dual-acting compounds as phosphodiesterase type-10A inhibitors and serotonin 5-HT1AR ligands. The most potent molecules, compounds 4 and 8, as partial agonists of 5-HT1AR and PDE10A inhibitors, exhibited a very high permeability of the blood-brain barrier. Compounds 4 and 8 displayed antipsychotic- and antidepressant-like activity and restored recognition memory deficits in mice. The overall effectiveness, pharmacokinetic and bioavailability studies imply the therapeutic-like potential of the presented dual-acting compounds as a method of treatment of NPS in dementia.


Assuntos
Antipsicóticos , Demência , Animais , Antipsicóticos/farmacologia , Demência/tratamento farmacológico , Demência/psicologia , Humanos , Ligantes , Camundongos , Diester Fosfórico Hidrolases , Serotonina
15.
Eur J Med Chem ; 225: 113792, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34530376

RESUMO

The lack of an effective treatment makes Alzheimer's disease a serious healthcare problem and a challenge for medicinal chemists. Herein we report interdisciplinary research on novel multifunctional ligands targeting proteins and processes involved in the development of the disease: BuChE, 5-HT6 receptors and ß-amyloid aggregation. Structure-activity relationship analyses supported by crystallography and docking studies led to the identification of a fused-type multifunctional ligand 50, with remarkable and balanced potencies against BuChE (IC50 = 90 nM) and 5-HT6R (Ki = 4.8 nM), and inhibitory activity against Aß aggregation (53% at 10 µM). In in vitro ADME-Tox and in vivo pharmacokinetic studies compound 50 showed good stability in the mouse liver microsomes, favourable safety profile and brain permeability with the brain to plasma ratio of 6.79 after p.o. administration in mice, thus being a promising candidate for in vivo pharmacology studies and a solid foundation for further research on effective anti-AD therapies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Desenvolvimento de Medicamentos , Fármacos Neuroprotetores/farmacologia , Receptores de Serotonina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Electrophorus , Células Hep G2 , Cavalos , Humanos , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 225: 113783, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34461507

RESUMO

Multifunctional ligands as an essential variant of polypharmacology are promising candidates for the treatment of multi-factorial diseases like Alzheimer's disease. Based on clinical evidence and following the paradigm of multifunctional ligands we have rationally designed and synthesized a series of compounds targeting processes involved in the development of the disease. The biological evaluation led to the discovery of two compounds with favorable pharmacological characteristics and ADMET profile. Compounds 17 and 35 are 5-HT6R antagonists (Ki = 13 nM and Ki = 15 nM respectively) and cholinesterase inhibitors with distinct mechanisms of enzyme inhibition. Compound 17, a tacrine derivative is a reversible inhibitor of acetyl- and butyrylcholinesterase (IC50 = 8 nM and IC50 = 24 nM respectively), while compound 35 with rivastigmine-derived phenyl N-ethyl-N-methylcarbamate fragment is a selective, pseudo-irreversible inhibitor of butyrylcholinesterase (IC50 = 455 nM). Both compounds inhibit aggregation of amyloid ß in vitro (75% for compound 17 and 68% for 35 at 10 µM) moreover, compound 35 is a potent tau aggregation inhibitor in cellulo (79%). In ADMET in vitro studies both compounds showed acceptable metabolic stability on mouse liver microsomes (28% and 60% for compound 17 and 35 respectively), no or little effect on CYP3A4 and 2D6 up to a concentration of 10 µM and lack of toxicity on HepG2 cell line (IC50 values of 80 and 21 µM, for 17 and 35 respectively). Based on the pharmacological characteristics and favorable pharmacokinetic properties, we propose compounds 17 and 35 as an excellent starting point for further optimization and in-depth biological studies.


Assuntos
Inibidores da Colinesterase/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Butirilcolinesterase/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Células Hep G2 , Cavalos , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo
17.
J Med Chem ; 64(17): 12603-12629, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34436892

RESUMO

The current pharmaceutical market lacks therapeutic agents designed to modulate behavioral disturbances associated with dementia. To address this unmet medical need, we designed multifunctional ligands characterized by a nanomolar affinity for clinically relevant targets that are associated with the disease pathology, namely, the 5-HT2A/6/7 and D2 receptors. Compounds that exhibited favorable functional efficacy, water solubility, and metabolic stability were selected for more detailed study. Pharmacological profiling revealed that compound 11 exerted pronounced antidepressant activity (MED 0.1 mg/kg), outperforming commonly available antidepressant drugs, while compound 16 elicited a robust anxiolytic activity (MED 1 mg/kg), exceeding comparator anxiolytics. In contrast to the existing psychotropic agents tested, the novel chemotypes did not negatively impact cognition. At a chronic dose regimen (25 days), 11 did not induce significant metabolic or adverse blood pressure disturbances. These promising therapeutic-like activities and benign safety profiles make the novel chemotypes potential treatment options for dementia patients.


Assuntos
Fármacos do Sistema Nervoso Central/síntese química , Fármacos do Sistema Nervoso Central/farmacologia , Demência/complicações , Desenho de Fármacos , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Animais , Antidepressivos , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/farmacocinética , Depressão/tratamento farmacológico , Depressão/etiologia , Humanos , Camundongos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonas/síntese química , Sulfonas/química
18.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34451841

RESUMO

The increasing number of patients reporting depressive symptoms requires the design of new antidepressants with higher efficacy and limited side effects. As our previous research showed, 2-methoxyphenylpiperazine derivatives are promising candidates to fulfill these criteria. In this study, we aimed to synthesize a novel 2-methoxyphenylpiperazine derivative, HBK-10, and investigate its in vitro and in vivo pharmacological profile. After assessing the affinity for serotonergic and dopaminergic receptors, and serotonin transporter, we determined intrinsic activity of the compound at the 5-HT1A and D2 receptors. Next, we performed behavioral experiments (forced swim test, tail suspension test) to evaluate the antidepressant-like activity of HBK-10 in naïve and corticosterone-treated mice. We also assessed the safety profile of the compound. We showed that HBK-10 bound strongly to 5-HT1A and D2 receptors and presented antagonistic properties at these receptors in the functional assays. HBK-10 displayed the antidepressant-like effect not only in naïve animals, but also in the corticosterone-induced mouse depression model, i.e., chronic administration of HBK-10 reversed corticosterone-induced changes in behavior. Moreover, the compound's sedative effect was observed at around 26-fold higher doses than the antidepressant-like ones. Our study showed that HBK-10 displayed a favorable pharmacological profile and may represent an attractive putative treatment candidate for depression.

19.
Future Med Chem ; 13(18): 1497-1514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253032

RESUMO

Aims: 5-HT1A receptor antagonists constitute a potential group of drugs in the treatment of CNS diseases. The aim of this study was to search for new procognitive and antidepressant drugs among amide derivatives of aminoalkanoic acids with 5-HT1A receptor antagonistic properties. Materials & methods: Thirty-three amides were designed and evaluated in silico for their drug-likeness. The synthesized compounds were tested in vitro for their 5-HT1A receptor affinity and functional profile. Moreover, their selectivity over 5-HT7, 5-HT2A and D2 receptors and ability to inhibit phosphodiesterases were evaluated. Results: A selected 5-HT1A receptor antagonist 20 (Ki = 35 nM, Kb = 4.9 nM) showed procognitive and antidepressant activity in vivo. Conclusion: Novel 5-HT1A receptor antagonists were discovered and shown as potential psychotropic drugs.


Assuntos
Amidas/síntese química , Antidepressivos/síntese química , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Amidas/farmacologia , Animais , Antidepressivos/farmacologia , Comportamento Animal , Desenho de Fármacos , Humanos , Masculino , Modelos Moleculares , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Ratos Wistar , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Especificidade da Espécie , Relação Estrutura-Atividade
20.
Psychopharmacology (Berl) ; 238(8): 2249-2260, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33973045

RESUMO

RATIONALE: The prevalence of depression is ever-increasing throughout the population. However, available treatments are ineffective in around one-third of patients and there is a need for more effective and safer drugs. OBJECTIVES: The antidepressant-like and procognitive effects of the "biased agonists" F15599 (also known as NLX-101) which preferentially targets postsynaptic 5-HT1A receptors and F13714, which targets 5-HT1A autoreceptors, were investigated in mice. METHODS: Antidepressant-like properties of the compounds and their effect on cognitive functions were assessed using the forced swim test (FST) and the novel object recognition (NOR), respectively. Next, we induced a depressive-like state by an unpredictable chronic mild stress (UCMS) procedure to test the compounds' activity in the depression model, followed by measures of sucrose preference, FST, and locomotor activity. Levels of phosphorylated cyclic AMP response element-binding protein (p-CREB) and phosphorylated extracellular signal-regulated kinase (p-ERK1/2) were also determined. RESULTS: F15599 reduced immobility time in the FST over a wider dose-range (2 to 16 mg/kg po) than F13714 (2 and 4 mg/kg po), suggesting accentuated antidepressant-like properties in mice. F15599 did not disrupt long-term memory consolidation in the NOR at any dose tested, while F13714 impaired memory formation, notably at higher doses (4-16 mg/kg). In UCMS mice, a single administration of F15599 and F13714 was sufficient to robustly normalize depressive-like behavior in the FST but did not rescue disrupted sucrose preference. Both F15599 and F13714 rescued cortical and hippocampal deficits in p-ERK1/2 levels of UCMS mice but did not influence the p-CREB levels. CONCLUSIONS: Our studies showed that 5-HT1A receptor biased agonists such as F13714 and especially F15599, due to its less pronounced side effects, might have potential as fast-acting antidepressants.


Assuntos
Aminopiridinas/administração & dosagem , Antidepressivos/administração & dosagem , Piperidinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Animais , Doença Crônica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Locomoção , Masculino , Camundongos , Receptor 5-HT1A de Serotonina/fisiologia , Método Simples-Cego , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...